Exercise 1A: Geospatial Data Wrangling

Author

Oh Jia Wen

Published

November 17, 2023

Modified

November 18, 2023

1. Getting Started

1.1 Install and launching R packages

The code chunk below uses p_load() of pacman package to check if sf and tidyverse packages are installed into the R environment. If they are, then they will be launched into R.

pacman::p_load(sf, tidyverse)

1.2 Importing Geospatial data

In this section, the following data will be imported into R through st_read() of sf package:

  • MP14_SUBZONE_WEB_PL , a polygon feature layer in ESRI shapefile format

  • CyclingPath , a line feature layer in ESRI shapefile format, and

  • PreSchool , a point feature layer in kml file format.

1.2.1 Importing Polygon feature data in shapefile format

The code chunk below uses st_read() of sf package to import MP14_SUBZONE_WEB_PL:

mpsz = st_read(dsn = "data/geospatial", 
                  layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `/Users/smu/Rworkshop/jiawenoh/ISSS624/Hands-on_Ex/Hands-on_Ex01/data/geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

It can be observed that there are a total of 323 multipolygon features and 15 fields in mpsz simple feature data frame. mpsz is in svy21 projected coordinates systems.

1.2.2 Importing Polyline feature data in shapefile form

The code chunk below uses st_read() of sf package to import CyclingPath shapefile:

cyclingpath = st_read(dsn = "data/geospatial", 
                         layer = "CyclingPathGazette")
Reading layer `CyclingPathGazette' from data source 
  `/Users/smu/Rworkshop/jiawenoh/ISSS624/Hands-on_Ex/Hands-on_Ex01/data/geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 2558 features and 2 fields
Geometry type: MULTILINESTRING
Dimension:     XY
Bounding box:  xmin: 11854.32 ymin: 28347.98 xmax: 42626.09 ymax: 48948.15
Projected CRS: SVY21

It can be observed that there are a total of 2,558 features and 2 fields in cyclingpath linestring feature data frame. It is in svy21 projected coordinates systems.

1.2.3 Importing GIS data in kml format

The code chunk below will be used to import the kml (pre-schools-location-kml) into R:

preschool = st_read("data/geospatial/PreSchoolsLocation.kml")
Reading layer `PRESCHOOLS_LOCATION' from data source 
  `/Users/smu/Rworkshop/jiawenoh/ISSS624/Hands-on_Ex/Hands-on_Ex01/data/geospatial/PreSchoolsLocation.kml' 
  using driver `KML'
Simple feature collection with 2290 features and 2 fields
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 103.6878 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84

It can be observed that there are a total of 2,290 features and 2 fields in preschool point feature data frame. It is a wgs84 coordinates systems.

2. Checking the Content of a Simple Feature Data Frame

After importing the various data sets, we will retrieve information related to the content of a simple feature data frame. We will be working with st_geometry(), glimpse(), and head().

2.1 Working with st_geometry()

By using mpsz$geom or mpsz[[1]], we can retrieve the geometry list-column which only display basic information of the feature class, such as type of geometry, geographic extent of the features and the coordinate system of the data.

st_geometry(mpsz)
Geometry set for 323 features 
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 5 geometries:

2.2 Working with glimpse ()

By using glimpse() of dplyr, we are able to learn more about the associated attribution information in the data frame. It reveals the data type of each fields (e.g., FMEL-UPD_D is in data data type, and X_ADDR is a double-precision values)

glimpse(mpsz)
Rows: 323
Columns: 16
$ OBJECTID   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
$ SUBZONE_NO <int> 1, 1, 3, 8, 3, 7, 9, 2, 13, 7, 12, 6, 1, 5, 1, 1, 3, 2, 2, …
$ SUBZONE_N  <chr> "MARINA SOUTH", "PEARL'S HILL", "BOAT QUAY", "HENDERSON HIL…
$ SUBZONE_C  <chr> "MSSZ01", "OTSZ01", "SRSZ03", "BMSZ08", "BMSZ03", "BMSZ07",…
$ CA_IND     <chr> "Y", "Y", "Y", "N", "N", "N", "N", "Y", "N", "N", "N", "N",…
$ PLN_AREA_N <chr> "MARINA SOUTH", "OUTRAM", "SINGAPORE RIVER", "BUKIT MERAH",…
$ PLN_AREA_C <chr> "MS", "OT", "SR", "BM", "BM", "BM", "BM", "SR", "QT", "QT",…
$ REGION_N   <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGION", "CENT…
$ REGION_C   <chr> "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR",…
$ INC_CRC    <chr> "5ED7EB253F99252E", "8C7149B9EB32EEFC", "C35FEFF02B13E0E5",…
$ FMEL_UPD_D <date> 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05…
$ X_ADDR     <dbl> 31595.84, 28679.06, 29654.96, 26782.83, 26201.96, 25358.82,…
$ Y_ADDR     <dbl> 29220.19, 29782.05, 29974.66, 29933.77, 30005.70, 29991.38,…
$ SHAPE_Leng <dbl> 5267.381, 3506.107, 1740.926, 3313.625, 2825.594, 4428.913,…
$ SHAPE_Area <dbl> 1630379.27, 559816.25, 160807.50, 595428.89, 387429.44, 103…
$ geometry   <MULTIPOLYGON [m]> MULTIPOLYGON (((31495.56 30..., MULTIPOLYGON (…

2.3 Working with head()

Instead of printing the complete information, head() allow users to select the numbers of record to display (i.e., the n argument)

head(mpsz, n=5)
Simple feature collection with 5 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 25867.68 ymin: 28369.47 xmax: 32362.39 ymax: 30435.54
Projected CRS: SVY21
  OBJECTID SUBZONE_NO      SUBZONE_N SUBZONE_C CA_IND      PLN_AREA_N
1        1          1   MARINA SOUTH    MSSZ01      Y    MARINA SOUTH
2        2          1   PEARL'S HILL    OTSZ01      Y          OUTRAM
3        3          3      BOAT QUAY    SRSZ03      Y SINGAPORE RIVER
4        4          8 HENDERSON HILL    BMSZ08      N     BUKIT MERAH
5        5          3        REDHILL    BMSZ03      N     BUKIT MERAH
  PLN_AREA_C       REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR
1         MS CENTRAL REGION       CR 5ED7EB253F99252E 2014-12-05 31595.84
2         OT CENTRAL REGION       CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3         SR CENTRAL REGION       CR C35FEFF02B13E0E5 2014-12-05 29654.96
4         BM CENTRAL REGION       CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5         BM CENTRAL REGION       CR 85D9ABEF0A40678F 2014-12-05 26201.96
    Y_ADDR SHAPE_Leng SHAPE_Area                       geometry
1 29220.19   5267.381  1630379.3 MULTIPOLYGON (((31495.56 30...
2 29782.05   3506.107   559816.2 MULTIPOLYGON (((29092.28 30...
3 29974.66   1740.926   160807.5 MULTIPOLYGON (((29932.33 29...
4 29933.77   3313.625   595428.9 MULTIPOLYGON (((27131.28 30...
5 30005.70   2825.594   387429.4 MULTIPOLYGON (((26451.03 30...

3. Plotting the Geospatial Data

The code chunk below uses plot() of R Graphic to visualize the geospatial features.

Show the code
plot(mpsz)

By default, the sf object is a multi-plot of all attributes. It is possible to plot only only the geometry by using the code chunk below.

Show the code
plot(st_geometry(mpsz))

Alternatively, we are able to choose the plot of sf object. For example, we could like to plot PLN_AREA_N.

Show the code
plot(mpsz["PLN_AREA_N"])

Note: plot() is mean for plotting the geospatial object for quick look. For high cartographic quality plot, other R package such as tmap should be used.

4. Working with Projection

Before performing geoprocessing using two geospatial data, it is crucial for us to ensure that both geospatial data are projected using similar coordinate system. Also known as Project Transformation, we will project a simple feature data system from one coordinate system to another coordinate system.

4.1 Assigning EPSG code to a simple feature data frame

In the code chunk below, it illustrates the coordinate system of mpsz simple feature data frame by using st_crs() of sf package:

st_crs(mpsz)
Coordinate Reference System:
  User input: SVY21 
  wkt:
PROJCRS["SVY21",
    BASEGEOGCRS["SVY21[WGS84]",
        DATUM["World Geodetic System 1984",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]],
            ID["EPSG",6326]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["Degree",0.0174532925199433]]],
    CONVERSION["unnamed",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["(E)",east,
            ORDER[1],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]],
        AXIS["(N)",north,
            ORDER[2],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]]]

As seen from the result, the EPSG code is inaccurate. Instead of showing 3414 (svg21), it displays 9001 (last row). This is a common issue that could happen in the process of importing geospatial data into R. The coordinate system of the source data could be missing or wrongly assigned.

In order to rectify the EPSG code, we will use the st_set_crs() of sf package:

mpsz3414 <- st_transform(mpsz, 3414)

To validate, we will used the code chunk below:

st_crs(mpsz3414)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

4.2 Transforming the project of preschool from wgs84 to svy21

Notably, it is common for us to transform original data from geographic coordinate system to projected coordinate system as the geographic coordinate system is not appropriate if the analysis requires distance and/or area measurements.

We performed the project transformation by using the code chunk below:

preschool3414 <- st_transform(preschool, 
                              crs = 3414)

To display the first 5 geometries and content of the preschool3414 data frame, we will use head():

head(preschool3414, n=5)
Simple feature collection with 5 features and 2 fields
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 24821.92 ymin: 31299.16 xmax: 28844.56 ymax: 46303.16
z_range:       zmin: 0 zmax: 0
Projected CRS: SVY21 / Singapore TM
   Name
1 kml_1
2 kml_2
3 kml_3
4 kml_4
5 kml_5
                                                                                                                                                                                                                                                                                                                                                                                                Description
1           <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>CENTRE_NAME</th> <td>CHILDREN'S COVE PRESCHOOL PTE.LTD.</td> </tr><tr bgcolor=""> <th>CENTRE_CODE</th> <td>PT9390</td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>498CC9FE48CC94D4</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20211201093631</td> </tr></table></center>
2                    <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>CENTRE_NAME</th> <td>CHILDREN'S COVE PTE. LTD.</td> </tr><tr bgcolor=""> <th>CENTRE_CODE</th> <td>PT8675</td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>22877550804213FD</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20211201093631</td> </tr></table></center>
3       <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>CENTRE_NAME</th> <td>CHILDREN'S VINEYARD PRESCHOOL PTE. LTD</td> </tr><tr bgcolor=""> <th>CENTRE_CODE</th> <td>PT9308</td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>B2FE90E44AD494E3</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20211201093631</td> </tr></table></center>
4 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>CENTRE_NAME</th> <td>CHILDTIME CARE & DEVELOPMENT CENTRE PTE.LTD.</td> </tr><tr bgcolor=""> <th>CENTRE_CODE</th> <td>PT9122</td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>1384CDC0D14B76A1</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20211201093631</td> </tr></table></center>
5                               <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>CENTRE_NAME</th> <td>CHILTERN HOUSE</td> </tr><tr bgcolor=""> <th>CENTRE_CODE</th> <td>PT2070</td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>FB24EAA6E73B2723</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20211201093631</td> </tr></table></center>
                       geometry
1 POINT Z (25089.46 31299.16 0)
2 POINT Z (27189.07 32792.54 0)
3 POINT Z (28844.56 36773.76 0)
4 POINT Z (24821.92 46303.16 0)
5 POINT Z (28637.82 35038.49 0)

5. Importing and Converting an Aspatial Data

In this section, we will import an aspatial data (not a geospatial data but contains fields that captured the x- and y-coordinates of the data points) into the R environment and save it as a tibble dataframe. Thereafter, we will convert it into a simple feature data frame.

5.1 Importing the aspatial data

For the purpose of the exercise, we will be using the Singapore listing (listings.csv) as retrieved from AirBnb.

listings <- read_csv("data/aspatial/listings.csv")

To ensure data accuracy, we will check if the data file have been imported correctly. The code chunk below uses list() of Base R instead of glimpse().

list(listings) 
[[1]]
# A tibble: 3,483 × 18
       id name      host_id host_name neighbourhood_group neighbourhood latitude
    <dbl> <chr>       <dbl> <chr>     <chr>               <chr>            <dbl>
 1  71609 Villa in…  367042 Belinda   East Region         Tampines          1.35
 2  71896 Home in …  367042 Belinda   East Region         Tampines          1.35
 3  71903 Home in …  367042 Belinda   East Region         Tampines          1.35
 4 275343 Rental u… 1439258 Kay       Central Region      Bukit Merah       1.29
 5 275344 Rental u… 1439258 Kay       Central Region      Bukit Merah       1.29
 6 289234 Home in …  367042 Belinda   East Region         Tampines          1.34
 7 294281 Rental u… 1521514 Elizabeth Central Region      Newton            1.31
 8 324945 Rental u… 1439258 Kay       Central Region      Bukit Merah       1.29
 9 330095 Rental u… 1439258 Kay       Central Region      Bukit Merah       1.29
10 369141 Place to… 1521514 Elizabeth Central Region      Newton            1.31
# ℹ 3,473 more rows
# ℹ 11 more variables: longitude <dbl>, room_type <chr>, price <dbl>,
#   minimum_nights <dbl>, number_of_reviews <dbl>, last_review <date>,
#   reviews_per_month <dbl>, calculated_host_listings_count <dbl>,
#   availability_365 <dbl>, number_of_reviews_ltm <dbl>, license <chr>

Observations:

  • Tibble data frame consists of 3,483 rows and 18 columns

  • Useful fields for our analysis : latitude and longitude (note: decimal degree format)

Assumption:

  • Data is in wgs84 geographic coordinate system

5.2 Creating a simple feature data frame from an aspatial data frame

In the code chunk below, we will be using st_as_sf() of sf package to convert listing data frame into a simple feature data frame:

listings_sf <- st_as_sf(listings, 
                       coords = c("longitude", "latitude"),
                       crs=4326) %>%
  st_transform(crs = 3414)
Note

coords : to provide x-coordinates, y-coordinates

crs : to provide the coordinates system in EPSG format.

EPSG: 4326 is wgs84 Geographic Coordinate System

EPSG : 3414 is Singapore SVY21 Projected Coordinate System.

For more information, do refer to epsg.io

To examine the content of our newly created simple feature data frame:

glimpse(listings_sf)
Rows: 3,483
Columns: 17
$ id                             <dbl> 71609, 71896, 71903, 275343, 275344, 28…
$ name                           <chr> "Villa in Singapore · ★4.44 · 2 bedroom…
$ host_id                        <dbl> 367042, 367042, 367042, 1439258, 143925…
$ host_name                      <chr> "Belinda", "Belinda", "Belinda", "Kay",…
$ neighbourhood_group            <chr> "East Region", "East Region", "East Reg…
$ neighbourhood                  <chr> "Tampines", "Tampines", "Tampines", "Bu…
$ room_type                      <chr> "Private room", "Private room", "Privat…
$ price                          <dbl> 150, 80, 80, 55, 69, 220, 85, 75, 45, 7…
$ minimum_nights                 <dbl> 92, 92, 92, 60, 60, 92, 92, 60, 60, 92,…
$ number_of_reviews              <dbl> 20, 24, 47, 22, 17, 12, 133, 18, 6, 81,…
$ last_review                    <date> 2020-01-17, 2019-10-13, 2020-01-09, 20…
$ reviews_per_month              <dbl> 0.14, 0.16, 0.31, 0.17, 0.12, 0.09, 0.9…
$ calculated_host_listings_count <dbl> 5, 5, 5, 52, 52, 5, 7, 52, 52, 7, 7, 1,…
$ availability_365               <dbl> 89, 89, 89, 275, 274, 89, 365, 365, 365…
$ number_of_reviews_ltm          <dbl> 0, 0, 0, 0, 3, 0, 0, 1, 3, 0, 0, 0, 0, …
$ license                        <chr> NA, NA, NA, "S0399", "S0399", NA, NA, "…
$ geometry                       <POINT [m]> POINT (41972.5 36390.05), POINT (…

Observation:

  • Instead of longitude and latitude, a new column called geometry has been added into the data frame.

6. Geoprocessing with sf package

In this section, we will be performing two comonly used geoprocessing functions, namely buffering and point in polygon count.

6.1 Buffering

The scenario: The authority is planning to upgrade the exiting cycling path. To do so, they need to acquire 5 metres of reserved land on the both sides of the current cycling path.

The task: To determine the extend of the land need to be acquired and their total area.

The solution:

In the code chunk below, we will be using st_buffer() of sf package is used to compute the 5-meter buffers around cycling paths.

buffer_cycling <- st_buffer(cyclingpath, 
                               dist=5, nQuadSegs = 30)

Then, we calculate the area of the buffers:

buffer_cycling$AREA <- st_area(buffer_cycling)

Lastly, we use sum() of Base R to derive the total land involved

sum(buffer_cycling$AREA)
1774367 [m^2]

6.2 Point-in-polygon count

The scenario: A pre-school service group want to find out the numbers of pre-schools in each Planning Subzone.

The solution:

The code chunk below performs two operations at one go. Firstly, identify pre-schools located inside each Planning Subzone by using st_intersects(). Next, length() of Base R is used to calculate numbers of pre-schools that fall inside each planning subzone.

mpsz3414$`PreSch Count`<- lengths(st_intersects(mpsz3414, preschool3414))
Warning

Be careful and do not be confuse with st_intersection() !

We can check the summary statistics of the newly derieved Presch Count Field by using summary() as shown in the code chunk below:

summary(mpsz3414$`PreSch Count`)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   0.00    0.00    4.00    7.09   10.00   72.00 

To list the planning subzone with the most number of pre-school, the top_n() of dplyr package is used as shown in the code chunk below:

top_n(mpsz3414, 1, `PreSch Count`)
Simple feature collection with 1 feature and 16 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 39655.33 ymin: 35966 xmax: 42940.57 ymax: 38622.37
Projected CRS: SVY21 / Singapore TM
  OBJECTID SUBZONE_NO     SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N PLN_AREA_C
1      189          2 TAMPINES EAST    TMSZ02      N   TAMPINES         TM
     REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR   Y_ADDR SHAPE_Leng
1 EAST REGION       ER 21658EAAF84F4D8D 2014-12-05 41122.55 37392.39   10180.62
  SHAPE_Area                       geometry PreSch Count
1    4339824 MULTIPOLYGON (((42196.76 38...           72

The solution:

Step 1: Use st_area() of sf package to derive the area of each planning subzone

mpsz3414$Area <- mpsz3414 %>%
  st_area()

Step 2: Apply mutate() of dplyr package to compute the density

mpsz3414 <- mpsz3414 %>%
  mutate(`PreSch Density` = `PreSch Count`/Area * 1000000)

7. Exploratory Data Analysis (EDA)

In this section, we will explore the data through ggplot2 functions. We will create functional and insightful statistical graphs to aid in our exploratory progress. We will plot a histogram and a scatterplot.

7.1 Plotting Histogram

To observe the distribution of PreSch Density, a histogram is insightful. We can used hist() of R graphics or ggplot2 to plot.

7.1.1 Histogram using hist()

Show the code
hist(mpsz3414$`PreSch Density`)

Despite the easy syntax, the output is far from ideal as it limits further customization.

7.1.2 Histogram using ggplot2()

Show the code
ggplot(data=mpsz3414, 
       aes(x= as.numeric(`PreSch Density`)))+
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue") +
  labs(title = "Are pre-school even distributed in Singapore?",
       subtitle= "There are many planning sub-zones with a single pre-school, on the other hand, \nthere are two planning sub-zones with at least 20 pre-schools",
      x = "Pre-school density (per km sq)",
      y = "Frequency")

7.2 Plotting Scatterplot

To observe the relationship between Pre-school Density and Pre-school count, a scatterplot could be ideal.

Show the code
ggplot(data=mpsz3414, 
       aes(y = `PreSch Count`, 
           x= as.numeric(`PreSch Density`)))+
  geom_point(color="black", 
             fill="light blue") +
  xlim(0, 40) +
  ylim(0, 40) +
  labs(title = "",
      x = "Pre-school density (per km sq)",
      y = "Pre-school count")