Exercise 2A: Spatial Weights and Applications

Author

Oh Jia Wen

Published

November 19, 2023

Modified

November 19, 2023

1. Getting Started

1.1 Install and launching R packages

The code chunk below uses p_load() of pacman package to check if sf, spdep, tmap, tidyverse , and knitr packages are installed into the R environment. If they are, then they will be launched into R.

pacman::p_load(sf, spdep, tmap, tidyverse, knitr)

1.2 Importing the OD data

We will be using two data sets for this exercise. Data were retrieved on 19th Nov 2023. They are :

  1. Hunan country boundary layer*. (data is in ESRI shapefile format) - Geospatial data
  2. Hunan_2012.csv*. (data is in csv file) - Attribute table

1.2.1 Importing Hunan country boundary layer

The code chunk below uses st_read() of sf package to import the 1st data set into R. The imported shapefile will be simple features object of sf.

hunan <- st_read(dsn = "data/geospatial", 
                 layer = "Hunan")
Reading layer `Hunan' from data source 
  `/Users/smu/Rworkshop/jiawenoh/ISSS624/Hands-on_Ex/Hands-on_Ex02/data/geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS:  WGS 84

1.2.2 Importing Hunan_2012.csv

Next, we will import the 2nd dataset (csv) into R. We will use read_csv() of readr package. The output is in R dataframe class.

hunan2012 <- read_csv("data/aspatial/Hunan_2012.csv")

1.3 Performing relational join

After importing, we will update the attribute table of hunan’s Spatial Polygons Data Frame with the attribute fields of hunan2012 dataframe. We will performed a left_join() with the aid of dplyr package.

hunan <- left_join(hunan,hunan2012) %>%
  select(1:4,7,15)

We will be joining both tables by County. By doing the left_join, we will combined the 8 variables from hunan, with 29 variables from hunan2012 and uses select() to filter for the variables that we are interested in.

2. Visualising Regional Development Indicator

In this section, we will be preparing a basemap and a choropleth map to show the distribution of GDPPC 2012 by using qtm() of tmap package.

Show the code
basemap <- tm_shape(hunan) +
  tm_polygons() +
  tm_text("NAME_3", size=0.5)

gdppc <- qtm(hunan, "GDPPC")
tmap_arrange(basemap, gdppc, asp=1, ncol=2)

Observations:

  • Changsha has the highest density.

  • Based on the geographic location, we could infer that their strategic location could indirectly boost the GDPPC of the nearby cities.

3. Computing Contiguity Spatial Weights

In this section, we will be using poly2nb() of spdep package to compute contiguity weight matrices for the study area. This function builds a neighbors list based on regions with contiguous boundaries.

We are able to pass a ‘queen’ argument with ‘TRUE’ or ‘FALSE’ as options. Without specification, the default will be TRUE. If you do not specify queen - FALSE, the function will return a list of first order neighbors using the queen criteria.

3.1 Computing (QUEEN) contiguity based neighbors

The code chunk below is used to compute Queen contiguity weight matrix.

wm_q <- poly2nb(hunan, queen=TRUE)
summary(wm_q)
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 
Link number distribution:

 1  2  3  4  5  6  7  8  9 11 
 2  2 12 16 24 14 11  4  2  1 
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 11 links

Observations:

  • Summary report highlights 88 area units in Hunan.

  • 1 most connected region with 11 neighbors, and

  • 2 least connected regions with only 1 neighbor.

For each polygon in our polygon object, wm_q lists all neighboring polygons. E.g., to see the neighbors of the first polygon in the object, we could use the following code:

wm_q[[1]]
[1]  2  3  4 57 85

From the output, we observed that polygon 1 have 5 neighbors. The respective polygons ID are stored in the hunan Spatial Polygons Data Frame Class.

To retrieve the country name of Polygon ID = 1, we can use the following code:

hunan$County[1]
[1] "Anxiang"

The output shows that Polygon ID = 1 is Anxiang country. To know more about the five neighboring polygons that we have identified with, the below code chunk will be used:

hunan$NAME_3[c(2,3,4,57,85)]
[1] "Hanshou" "Jinshi"  "Li"      "Nan"     "Taoyuan"

Similarly, we are able to retrieve the GDPPC of these five countries by using the code chunk below:

nb1 <- wm_q[[1]]
nb1 <- hunan$GDPPC[nb1]
nb1
[1] 20981 34592 24473 21311 22879

Additionally, we can display the complete weight matrix by using str() . For the purpose of this exercise, we will add [0:10] to display the first 10 list instead of the full 88.

str(wm_q[0:10])
List of 10
 $ : int [1:5] 2 3 4 57 85
 $ : int [1:5] 1 57 58 78 85
 $ : int [1:4] 1 4 5 85
 $ : int [1:4] 1 3 5 6
 $ : int [1:4] 3 4 6 85
 $ : int [1:5] 4 5 69 75 85
 $ : int [1:4] 67 71 74 84
 $ : int [1:7] 9 46 47 56 78 80 86
 $ : int [1:6] 8 66 68 78 84 86
 $ : int [1:8] 16 17 19 20 22 70 72 73

3.2 Creating (ROOK) contiguity based neighbors

The code chunk below will be used to compute Rook contiguity weight matrix.

wm_r <- poly2nb(hunan, queen=FALSE)
summary(wm_r)
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 440 
Percentage nonzero weights: 5.681818 
Average number of links: 5 
Link number distribution:

 1  2  3  4  5  6  7  8  9 10 
 2  2 12 20 21 14 11  3  2  1 
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 10 links

Observations:

  • Summary report highlights 88 area units in Hunan.

  • Similar to section 3.1 in terms of area units and least connected regions.

  • Differs in the most connected area as Rook shows 10 neighbors whereas Queen shows 11 neighbors.

3.3 Visualising contiguity weights

We will be using sf package to get the latitude and longitude of the polygon centroids which allow us to take a point and display a line to each neighboring point. To do so, we would require the coordinates in a separate data frame, and apply a mapping function. The mapping function applies a given function to each element of a vector and returns a vector of the same length.

Our input vector will be geometry column of us.bound while our function will be st_centroid. Additionally, we will be using map_dbl variation of map from the purrr package.

To get our longitude value, we map the st_centroid function over the geometry column of us.bound and access the longitude value through double bracket notation [[]] and 1 which allows us to get the first value in each centroid and the longitude.

longitude <- map_dbl(hunan$geometry, ~st_centroid(.x)[[1]])

Similarly, we use the same approach to get latitude. However, we will replace 1 with 2.

latitude <- map_dbl(hunan$geometry, ~st_centroid(.x)[[2]])

With longitude and latitude, we can combine them through cbind() to put longitude and latitude into the same object and use head() to check the first few observations.

coords <- cbind(longitude, latitude)
head(coords)
     longitude latitude
[1,]  112.1531 29.44362
[2,]  112.0372 28.86489
[3,]  111.8917 29.47107
[4,]  111.7031 29.74499
[5,]  111.6138 29.49258
[6,]  111.0341 29.79863

3.4 Plotting Contiguity based neighbors map

We will be plotting the contiguity based neighbors map for Queen, and Rock. Ideally, we are able to plot individually, or combined them together.

Show the code
plot(hunan$geometry, border="lightgrey")
plot(wm_q, coords, pch = 19, cex = 0.6, add = TRUE, col= "red")

Show the code
plot(hunan$geometry, border="lightgrey")
plot(wm_r, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")

Show the code
par(mfrow=c(1,2))
plot(hunan$geometry, border="lightgrey")
plot(wm_q, coords, pch = 19, cex = 0.6, add = TRUE, col= "red", main="Queen Contiguity") 

plot(hunan$geometry, border="lightgrey")
plot(wm_r, coords, pch = 19, cex = 0.6, add = TRUE, col = "red", main="Rook Contiguity")

4. Compute fixed distance based neighbors

In this section, we will be using dnearneigh() of spdep package to derive distance-based weight matrices.

Also, we note that the function identifies neighbours of region points by Euclidean distance with a distance band where d1= lower bound, and d2= upper bound. If unprojected coordinates are used and either specified in the coordinates object x or with x as a two column matrix and longlat=TRUE, great circle distances in km will be calculated assuming the WGS84 reference ellipsoid.

The following steps will be performed :

  1. Determine the cut-off distance

  2. Compute fixed distance weight matrix

  3. Plot fixed distance weight matrix

Note: fixed distance is more useful in smoothing the neighbor relation across multiple neighbors as densely area tends to have more neighbors and vice versa

We will begin the computation by determining the upper limit for the distance band through the following steps :

  • Return a matrix with the indices of point belonging to the set of the k nearest neighbors by using knearneigh() of spdep.

  • Convert the knn object return by knearneigh() into a neighbors list of class nb with a list of integer vectors containing neighbor region number ids by using knn2nb().

  • Return the length of neighbor relationship edges by using nbdists() of spdep.

  • Remove the list structure of the return object by using unlist().

Show the code
#coords <- coordinates(hunan)
k1 <- knn2nb(knearneigh(coords))
k1dists <- unlist(nbdists(k1, coords, longlat = TRUE))
summary(k1dists)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  24.79   32.57   38.01   39.07   44.52   61.79 

As observed, the maximum distance is 61.79km (our upper threshold to ensure that all units have at least one neighbor.

Next, we will compute the distance weight matrix by using dnearneigh() :

Show the code
wm_d62 <- dnearneigh(coords, 0, 62, longlat = TRUE)
wm_d62
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 324 
Percentage nonzero weights: 4.183884 
Average number of links: 3.681818 

To display the structure of the weight matrix : we can use str() or combine table() and card() of spdep package. In the example below, we wil use the latter:

Show the code
table(hunan$County, card(wm_d62))
               
                1 2 3 4 5 6
  Anhua         1 0 0 0 0 0
  Anren         0 0 0 1 0 0
  Anxiang       0 0 0 0 1 0
  Baojing       0 0 0 0 1 0
  Chaling       0 0 1 0 0 0
  Changning     0 0 1 0 0 0
  Changsha      0 0 0 1 0 0
  Chengbu       0 1 0 0 0 0
  Chenxi        0 0 0 1 0 0
  Cili          0 1 0 0 0 0
  Dao           0 0 0 1 0 0
  Dongan        0 0 1 0 0 0
  Dongkou       0 0 0 1 0 0
  Fenghuang     0 0 0 1 0 0
  Guidong       0 0 1 0 0 0
  Guiyang       0 0 0 1 0 0
  Guzhang       0 0 0 0 0 1
  Hanshou       0 0 0 1 0 0
  Hengdong      0 0 0 0 1 0
  Hengnan       0 0 0 0 1 0
  Hengshan      0 0 0 0 0 1
  Hengyang      0 0 0 0 0 1
  Hongjiang     0 0 0 0 1 0
  Huarong       0 0 0 1 0 0
  Huayuan       0 0 0 1 0 0
  Huitong       0 0 0 1 0 0
  Jiahe         0 0 0 0 1 0
  Jianghua      0 0 1 0 0 0
  Jiangyong     0 1 0 0 0 0
  Jingzhou      0 1 0 0 0 0
  Jinshi        0 0 0 1 0 0
  Jishou        0 0 0 0 0 1
  Lanshan       0 0 0 1 0 0
  Leiyang       0 0 0 1 0 0
  Lengshuijiang 0 0 1 0 0 0
  Li            0 0 1 0 0 0
  Lianyuan      0 0 0 0 1 0
  Liling        0 1 0 0 0 0
  Linli         0 0 0 1 0 0
  Linwu         0 0 0 1 0 0
  Linxiang      1 0 0 0 0 0
  Liuyang       0 1 0 0 0 0
  Longhui       0 0 1 0 0 0
  Longshan      0 1 0 0 0 0
  Luxi          0 0 0 0 1 0
  Mayang        0 0 0 0 0 1
  Miluo         0 0 0 0 1 0
  Nan           0 0 0 0 1 0
  Ningxiang     0 0 0 1 0 0
  Ningyuan      0 0 0 0 1 0
  Pingjiang     0 1 0 0 0 0
  Qidong        0 0 1 0 0 0
  Qiyang        0 0 1 0 0 0
  Rucheng       0 1 0 0 0 0
  Sangzhi       0 1 0 0 0 0
  Shaodong      0 0 0 0 1 0
  Shaoshan      0 0 0 0 1 0
  Shaoyang      0 0 0 1 0 0
  Shimen        1 0 0 0 0 0
  Shuangfeng    0 0 0 0 0 1
  Shuangpai     0 0 0 1 0 0
  Suining       0 0 0 0 1 0
  Taojiang      0 1 0 0 0 0
  Taoyuan       0 1 0 0 0 0
  Tongdao       0 1 0 0 0 0
  Wangcheng     0 0 0 1 0 0
  Wugang        0 0 1 0 0 0
  Xiangtan      0 0 0 1 0 0
  Xiangxiang    0 0 0 0 1 0
  Xiangyin      0 0 0 1 0 0
  Xinhua        0 0 0 0 1 0
  Xinhuang      1 0 0 0 0 0
  Xinning       0 1 0 0 0 0
  Xinshao       0 0 0 0 0 1
  Xintian       0 0 0 0 1 0
  Xupu          0 1 0 0 0 0
  Yanling       0 0 1 0 0 0
  Yizhang       1 0 0 0 0 0
  Yongshun      0 0 0 1 0 0
  Yongxing      0 0 0 1 0 0
  You           0 0 0 1 0 0
  Yuanjiang     0 0 0 0 1 0
  Yuanling      1 0 0 0 0 0
  Yueyang       0 0 1 0 0 0
  Zhijiang      0 0 0 0 1 0
  Zhongfang     0 0 0 1 0 0
  Zhuzhou       0 0 0 0 1 0
  Zixing        0 0 1 0 0 0

On average, we could see that the all units have 3-4 neighbors.

Thereafter, we will plot the distance weight matrix by using the code below:

Show the code
plot(hunan$geometry, border="lightgrey")
plot(wm_d62, coords, add=TRUE)
plot(k1, coords, add=TRUE, col="red", length=0.08)

As seen above, the red line indicates the 1st nearest neighbors while the black lines indicate the links of neighbors that are within the upper bound (61.79km)

Alternatively, we can plot both lines next to one another:

Show the code
par(mfrow=c(1,2))
plot(hunan$geometry, border="lightgrey")
plot(k1, coords, add=TRUE, col="red", length=0.08, main="1st nearest neighbours")
plot(hunan$geometry, border="lightgrey")
plot(wm_d62, coords, add=TRUE, pch = 19, cex = 0.6, main="Distance link")

5. Compute adaptive distance weight matrix

Unlike the previous section, we do not do need to perform the first step in determining the cut-off distance. As shown in the code chunk below, we will control the number of neighbors directly using k-nearest neighbors, either by accepting asymmetric neighbors or imposing symmetry.

The following steps will be performed :

  1. Compute adaptive distance weight matrix

  2. Plot adaptive distance weight matrix

We will begin with the following step :

  • Return a matrix with the indices of point belonging to the set of the k nearest neighbors by using knearneigh() of spdep.
Show the code
knn6 <- knn2nb(knearneigh(coords, k=6))
knn6
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 528 
Percentage nonzero weights: 6.818182 
Average number of links: 6 
Non-symmetric neighbours list

To check if all coutry have exactly six neighbors (k= 6), we can display the content of the matrix using str() :

Show the code
str(knn6)
List of 88
 $ : int [1:6] 2 3 4 5 57 64
 $ : int [1:6] 1 3 57 58 78 85
 $ : int [1:6] 1 2 4 5 57 85
 $ : int [1:6] 1 3 5 6 69 85
 $ : int [1:6] 1 3 4 6 69 85
 $ : int [1:6] 3 4 5 69 75 85
 $ : int [1:6] 9 66 67 71 74 84
 $ : int [1:6] 9 46 47 78 80 86
 $ : int [1:6] 8 46 66 68 84 86
 $ : int [1:6] 16 19 22 70 72 73
 $ : int [1:6] 10 14 16 17 70 72
 $ : int [1:6] 13 15 60 61 63 83
 $ : int [1:6] 12 15 60 61 63 83
 $ : int [1:6] 11 15 16 17 72 83
 $ : int [1:6] 12 13 14 17 60 83
 $ : int [1:6] 10 11 17 22 72 83
 $ : int [1:6] 10 11 14 16 72 83
 $ : int [1:6] 20 22 23 63 77 83
 $ : int [1:6] 10 20 21 73 74 82
 $ : int [1:6] 18 19 21 22 23 82
 $ : int [1:6] 19 20 35 74 82 86
 $ : int [1:6] 10 16 18 19 20 83
 $ : int [1:6] 18 20 41 77 79 82
 $ : int [1:6] 25 28 31 52 54 81
 $ : int [1:6] 24 28 31 33 54 81
 $ : int [1:6] 25 27 29 33 42 81
 $ : int [1:6] 26 29 30 37 42 81
 $ : int [1:6] 24 25 33 49 52 54
 $ : int [1:6] 26 27 37 42 43 81
 $ : int [1:6] 26 27 28 33 49 81
 $ : int [1:6] 24 25 36 39 40 54
 $ : int [1:6] 24 31 50 54 55 56
 $ : int [1:6] 25 26 28 30 49 81
 $ : int [1:6] 36 40 41 45 56 80
 $ : int [1:6] 21 41 46 47 80 82
 $ : int [1:6] 31 34 40 45 56 80
 $ : int [1:6] 26 27 29 42 43 44
 $ : int [1:6] 23 43 44 62 77 79
 $ : int [1:6] 25 40 42 43 44 81
 $ : int [1:6] 31 36 39 43 45 79
 $ : int [1:6] 23 35 45 79 80 82
 $ : int [1:6] 26 27 37 39 43 81
 $ : int [1:6] 37 39 40 42 44 79
 $ : int [1:6] 37 38 39 42 43 79
 $ : int [1:6] 34 36 40 41 79 80
 $ : int [1:6] 8 9 35 47 78 86
 $ : int [1:6] 8 21 35 46 80 86
 $ : int [1:6] 49 50 51 52 53 55
 $ : int [1:6] 28 33 48 51 52 54
 $ : int [1:6] 32 48 51 52 54 55
 $ : int [1:6] 28 48 49 50 52 54
 $ : int [1:6] 28 48 49 50 51 54
 $ : int [1:6] 48 50 51 52 55 75
 $ : int [1:6] 24 28 49 50 51 52
 $ : int [1:6] 32 48 50 52 53 75
 $ : int [1:6] 32 34 36 78 80 85
 $ : int [1:6] 1 2 3 58 64 68
 $ : int [1:6] 2 57 64 66 68 78
 $ : int [1:6] 12 13 60 61 87 88
 $ : int [1:6] 12 13 59 61 63 87
 $ : int [1:6] 12 13 60 62 63 87
 $ : int [1:6] 12 38 61 63 77 87
 $ : int [1:6] 12 18 60 61 62 83
 $ : int [1:6] 1 3 57 58 68 76
 $ : int [1:6] 58 64 66 67 68 76
 $ : int [1:6] 9 58 67 68 76 84
 $ : int [1:6] 7 65 66 68 76 84
 $ : int [1:6] 9 57 58 66 78 84
 $ : int [1:6] 4 5 6 32 75 85
 $ : int [1:6] 10 16 19 22 72 73
 $ : int [1:6] 7 19 73 74 84 86
 $ : int [1:6] 10 11 14 16 17 70
 $ : int [1:6] 10 19 21 70 71 74
 $ : int [1:6] 19 21 71 73 84 86
 $ : int [1:6] 6 32 50 53 55 69
 $ : int [1:6] 58 64 65 66 67 68
 $ : int [1:6] 18 23 38 61 62 63
 $ : int [1:6] 2 8 9 46 58 68
 $ : int [1:6] 38 40 41 43 44 45
 $ : int [1:6] 34 35 36 41 45 47
 $ : int [1:6] 25 26 28 33 39 42
 $ : int [1:6] 19 20 21 23 35 41
 $ : int [1:6] 12 13 15 16 22 63
 $ : int [1:6] 7 9 66 68 71 74
 $ : int [1:6] 2 3 4 5 56 69
 $ : int [1:6] 8 9 21 46 47 74
 $ : int [1:6] 59 60 61 62 63 88
 $ : int [1:6] 59 60 61 62 63 87
 - attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
 - attr(*, "call")= language knearneigh(x = coords, k = 6)
 - attr(*, "sym")= logi FALSE
 - attr(*, "type")= chr "knn"
 - attr(*, "knn-k")= num 6
 - attr(*, "class")= chr "nb"

Thereafter, we will plot the distance weight matrix by using the code below:

Show the code
plot(hunan$geometry, border="lightgrey")
plot(knn6, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")

6. Weights based on IDW

In this section, we will derive a spatial weight matrix based on Inversed Distance method.

The following steps will be performed :

  1. Compute the distances between areas (by using nbdist() of spdep)

  2. Assign weights to each neighboring polygon (by using nb2listw() of spdep)

Show the code
dist <- nbdists(wm_q, coords, longlat = TRUE)
ids <- lapply(dist, function(x) 1/(x))
ids
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113

[[2]]
[1] 0.01535405 0.01764308 0.01925924 0.02323898 0.01719350

[[3]]
[1] 0.03916350 0.02822040 0.03695795 0.01395765

[[4]]
[1] 0.01820896 0.02822040 0.03414741 0.01539065

[[5]]
[1] 0.03695795 0.03414741 0.01524598 0.01618354

[[6]]
[1] 0.015390649 0.015245977 0.021748129 0.011883901 0.009810297

[[7]]
[1] 0.01708612 0.01473997 0.01150924 0.01872915

[[8]]
[1] 0.02022144 0.03453056 0.02529256 0.01036340 0.02284457 0.01500600 0.01515314

[[9]]
[1] 0.02022144 0.01574888 0.02109502 0.01508028 0.02902705 0.01502980

[[10]]
[1] 0.02281552 0.01387777 0.01538326 0.01346650 0.02100510 0.02631658 0.01874863
[8] 0.01500046

[[11]]
[1] 0.01882869 0.02243492 0.02247473

[[12]]
[1] 0.02779227 0.02419652 0.02333385 0.02986130 0.02335429

[[13]]
[1] 0.02779227 0.02650020 0.02670323 0.01714243

[[14]]
[1] 0.01882869 0.01233868 0.02098555

[[15]]
[1] 0.02650020 0.01233868 0.01096284 0.01562226

[[16]]
[1] 0.02281552 0.02466962 0.02765018 0.01476814 0.01671430

[[17]]
[1] 0.01387777 0.02243492 0.02098555 0.01096284 0.02466962 0.01593341 0.01437996

[[18]]
[1] 0.02039779 0.02032767 0.01481665 0.01473691 0.01459380

[[19]]
[1] 0.01538326 0.01926323 0.02668415 0.02140253 0.01613589 0.01412874

[[20]]
[1] 0.01346650 0.02039779 0.01926323 0.01723025 0.02153130 0.01469240 0.02327034

[[21]]
[1] 0.02668415 0.01723025 0.01766299 0.02644986 0.02163800

[[22]]
[1] 0.02100510 0.02765018 0.02032767 0.02153130 0.01489296

[[23]]
[1] 0.01481665 0.01469240 0.01401432 0.02246233 0.01880425 0.01530458 0.01849605

[[24]]
[1] 0.02354598 0.01837201 0.02607264 0.01220154 0.02514180

[[25]]
[1] 0.02354598 0.02188032 0.01577283 0.01949232 0.02947957

[[26]]
[1] 0.02155798 0.01745522 0.02212108 0.02220532

[[27]]
[1] 0.02155798 0.02490625 0.01562326

[[28]]
[1] 0.01837201 0.02188032 0.02229549 0.03076171 0.02039506

[[29]]
[1] 0.02490625 0.01686587 0.01395022

[[30]]
[1] 0.02090587

[[31]]
[1] 0.02607264 0.01577283 0.01219005 0.01724850 0.01229012 0.01609781 0.01139438
[8] 0.01150130

[[32]]
[1] 0.01220154 0.01219005 0.01712515 0.01340413 0.01280928 0.01198216 0.01053374
[8] 0.01065655

[[33]]
[1] 0.01949232 0.01745522 0.02229549 0.02090587 0.01979045

[[34]]
[1] 0.03113041 0.03589551 0.02882915

[[35]]
[1] 0.01766299 0.02185795 0.02616766 0.02111721 0.02108253 0.01509020

[[36]]
[1] 0.01724850 0.03113041 0.01571707 0.01860991 0.02073549 0.01680129

[[37]]
[1] 0.01686587 0.02234793 0.01510990 0.01550676

[[38]]
[1] 0.01401432 0.02407426 0.02276151 0.01719415

[[39]]
[1] 0.01229012 0.02172543 0.01711924 0.02629732 0.01896385

[[40]]
[1] 0.01609781 0.01571707 0.02172543 0.01506473 0.01987922 0.01894207

[[41]]
[1] 0.02246233 0.02185795 0.02205991 0.01912542 0.01601083 0.01742892

[[42]]
[1] 0.02212108 0.01562326 0.01395022 0.02234793 0.01711924 0.01836831 0.01683518

[[43]]
[1] 0.01510990 0.02629732 0.01506473 0.01836831 0.03112027 0.01530782

[[44]]
[1] 0.01550676 0.02407426 0.03112027 0.01486508

[[45]]
[1] 0.03589551 0.01860991 0.01987922 0.02205991 0.02107101 0.01982700

[[46]]
[1] 0.03453056 0.04033752 0.02689769

[[47]]
[1] 0.02529256 0.02616766 0.04033752 0.01949145 0.02181458

[[48]]
[1] 0.02313819 0.03370576 0.02289485 0.01630057 0.01818085

[[49]]
[1] 0.03076171 0.02138091 0.02394529 0.01990000

[[50]]
[1] 0.01712515 0.02313819 0.02551427 0.02051530 0.02187179

[[51]]
[1] 0.03370576 0.02138091 0.02873854

[[52]]
[1] 0.02289485 0.02394529 0.02551427 0.02873854 0.03516672

[[53]]
[1] 0.01630057 0.01979945 0.01253977

[[54]]
[1] 0.02514180 0.02039506 0.01340413 0.01990000 0.02051530 0.03516672

[[55]]
[1] 0.01280928 0.01818085 0.02187179 0.01979945 0.01882298

[[56]]
[1] 0.01036340 0.01139438 0.01198216 0.02073549 0.01214479 0.01362855 0.01341697

[[57]]
[1] 0.028079221 0.017643082 0.031423501 0.029114131 0.013520292 0.009903702

[[58]]
[1] 0.01925924 0.03142350 0.02722997 0.01434859 0.01567192

[[59]]
[1] 0.01696711 0.01265572 0.01667105 0.01785036

[[60]]
[1] 0.02419652 0.02670323 0.01696711 0.02343040

[[61]]
[1] 0.02333385 0.01265572 0.02343040 0.02514093 0.02790764 0.01219751 0.02362452

[[62]]
[1] 0.02514093 0.02002219 0.02110260

[[63]]
[1] 0.02986130 0.02790764 0.01407043 0.01805987

[[64]]
[1] 0.02911413 0.01689892

[[65]]
[1] 0.02471705

[[66]]
[1] 0.01574888 0.01726461 0.03068853 0.01954805 0.01810569

[[67]]
[1] 0.01708612 0.01726461 0.01349843 0.01361172

[[68]]
[1] 0.02109502 0.02722997 0.03068853 0.01406357 0.01546511

[[69]]
[1] 0.02174813 0.01645838 0.01419926

[[70]]
[1] 0.02631658 0.01963168 0.02278487

[[71]]
[1] 0.01473997 0.01838483 0.03197403

[[72]]
[1] 0.01874863 0.02247473 0.01476814 0.01593341 0.01963168

[[73]]
[1] 0.01500046 0.02140253 0.02278487 0.01838483 0.01652709

[[74]]
[1] 0.01150924 0.01613589 0.03197403 0.01652709 0.01342099 0.02864567

[[75]]
[1] 0.011883901 0.010533736 0.012539774 0.018822977 0.016458383 0.008217581

[[76]]
[1] 0.01352029 0.01434859 0.01689892 0.02471705 0.01954805 0.01349843 0.01406357

[[77]]
[1] 0.014736909 0.018804247 0.022761507 0.012197506 0.020022195 0.014070428
[7] 0.008440896

[[78]]
[1] 0.02323898 0.02284457 0.01508028 0.01214479 0.01567192 0.01546511 0.01140779

[[79]]
[1] 0.01530458 0.01719415 0.01894207 0.01912542 0.01530782 0.01486508 0.02107101

[[80]]
[1] 0.01500600 0.02882915 0.02111721 0.01680129 0.01601083 0.01982700 0.01949145
[8] 0.01362855

[[81]]
[1] 0.02947957 0.02220532 0.01150130 0.01979045 0.01896385 0.01683518

[[82]]
[1] 0.02327034 0.02644986 0.01849605 0.02108253 0.01742892

[[83]]
[1] 0.023354289 0.017142433 0.015622258 0.016714303 0.014379961 0.014593799
[7] 0.014892965 0.018059871 0.008440896

[[84]]
[1] 0.01872915 0.02902705 0.01810569 0.01361172 0.01342099 0.01297994

[[85]]
 [1] 0.011451133 0.017193502 0.013957649 0.016183544 0.009810297 0.010656545
 [7] 0.013416965 0.009903702 0.014199260 0.008217581 0.011407794

[[86]]
[1] 0.01515314 0.01502980 0.01412874 0.02163800 0.01509020 0.02689769 0.02181458
[8] 0.02864567 0.01297994

[[87]]
[1] 0.01667105 0.02362452 0.02110260 0.02058034

[[88]]
[1] 0.01785036 0.02058034

Weights are assigned based on the fraction of 1/#no.of neighbors to each neighboring country then summing the weighted income values.

For the example below, we will used style = ‘W’ option (note: there are robust options available). By adding ’Zero.police = TRUE’, we are allowing list of non-neighbors.

Show the code
rswm_q <- nb2listw(wm_q, style="W", zero.policy = TRUE)
rswm_q
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: W 
Weights constants summary:
   n   nn S0       S1       S2
W 88 7744 88 37.86334 365.9147

To see the weight of the first polygon’s eight neighbor type:

rswm_q$weights[10]
[[1]]
[1] 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Using the same method, we can derive a row standardize distance weight matrix:

Show the code
rswm_ids <- nb2listw(wm_q, glist=ids, style="B", zero.policy=TRUE)
rswm_ids
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: B 
Weights constants summary:
   n   nn       S0        S1     S2
B 88 7744 8.786867 0.3776535 3.8137

To identify the weight of the first list:

rswm_ids$weights[1]
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113

To view the summary :

summary(unlist(rswm_ids$weights))
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
0.008218 0.015088 0.018739 0.019614 0.022823 0.040338 

7. Application of Spatial Weight Matrix

In this section, we will create four different spatial lagged variables, namely:

  1. spatial lag with row-standardized weights

  2. spatial lag as a sum of neighboring values

  3. spatial window average, and

  4. spatial window sum

7.1 Spatial leg with row-standarized weights

Step 1: Compute average neighbor GDPP value for each polygon. Often, these values are referred to as spatially lagged values.

GDPPC.lag <- lag.listw(rswm_q, hunan$GDPPC)
GDPPC.lag
 [1] 24847.20 22724.80 24143.25 27737.50 27270.25 21248.80 43747.00 33582.71
 [9] 45651.17 32027.62 32671.00 20810.00 25711.50 30672.33 33457.75 31689.20
[17] 20269.00 23901.60 25126.17 21903.43 22718.60 25918.80 20307.00 20023.80
[25] 16576.80 18667.00 14394.67 19848.80 15516.33 20518.00 17572.00 15200.12
[33] 18413.80 14419.33 24094.50 22019.83 12923.50 14756.00 13869.80 12296.67
[41] 15775.17 14382.86 11566.33 13199.50 23412.00 39541.00 36186.60 16559.60
[49] 20772.50 19471.20 19827.33 15466.80 12925.67 18577.17 14943.00 24913.00
[57] 25093.00 24428.80 17003.00 21143.75 20435.00 17131.33 24569.75 23835.50
[65] 26360.00 47383.40 55157.75 37058.00 21546.67 23348.67 42323.67 28938.60
[73] 25880.80 47345.67 18711.33 29087.29 20748.29 35933.71 15439.71 29787.50
[81] 18145.00 21617.00 29203.89 41363.67 22259.09 44939.56 16902.00 16930.00

Step 2: Append spatially lag GDPPC values onto hunan sf data frame

lag.list <- list(hunan$NAME_3, lag.listw(rswm_q, hunan$GDPPC))
lag.res <- as.data.frame(lag.list)
colnames(lag.res) <- c("NAME_3", "lag GDPPC")
hunan <- left_join(hunan,lag.res)

Step 3: Verify data frame

head(hunan)
Simple feature collection with 6 features and 7 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 110.4922 ymin: 28.61762 xmax: 112.3013 ymax: 30.12812
Geodetic CRS:  WGS 84
   NAME_2  ID_3  NAME_3   ENGTYPE_3  County GDPPC lag GDPPC
1 Changde 21098 Anxiang      County Anxiang 23667  24847.20
2 Changde 21100 Hanshou      County Hanshou 20981  22724.80
3 Changde 21101  Jinshi County City  Jinshi 34592  24143.25
4 Changde 21102      Li      County      Li 24473  27737.50
5 Changde 21103   Linli      County   Linli 25554  27270.25
6 Changde 21104  Shimen      County  Shimen 27137  21248.80
                        geometry
1 POLYGON ((112.0625 29.75523...
2 POLYGON ((112.2288 29.11684...
3 POLYGON ((111.8927 29.6013,...
4 POLYGON ((111.3731 29.94649...
5 POLYGON ((111.6324 29.76288...
6 POLYGON ((110.8825 30.11675...
Show the code
gdppc <- qtm(hunan, "GDPPC")
lag_gdppc <- qtm(hunan, "lag GDPPC")
tmap_arrange(gdppc, lag_gdppc, asp=1, ncol=2)

7.2 Spatial lag as sum of neighboring values

To begin, we can calculate spatial lag as a sum of neighboring values by assigning binary weights. This requires us to go back to our neighbors list, then apply a function that will assign binary weights, then we use glist = in the nb2listw() function to explicitly assign these weights.

Step 1: apply lapply() function to assign a value of 1 for each neighbor

Step 2: apply nb2listw() function to explicitly assign these weights.

b_weights <- lapply(wm_q, function(x) 0*x + 1)
b_weights2 <- nb2listw(wm_q, 
                       glist = b_weights, 
                       style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: B 
Weights constants summary:
   n   nn  S0  S1    S2
B 88 7744 448 896 10224

Step 3: use lag.listw() to compute a lag variable from our weight and GDPPC.

lag_sum <- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
lag.res <- as.data.frame(lag_sum)
colnames(lag.res) <- c("NAME_3", "lag_sum GDPPC")

Step 4: examine the result

lag_sum
[[1]]
 [1] "Anxiang"       "Hanshou"       "Jinshi"        "Li"           
 [5] "Linli"         "Shimen"        "Liuyang"       "Ningxiang"    
 [9] "Wangcheng"     "Anren"         "Guidong"       "Jiahe"        
[13] "Linwu"         "Rucheng"       "Yizhang"       "Yongxing"     
[17] "Zixing"        "Changning"     "Hengdong"      "Hengnan"      
[21] "Hengshan"      "Leiyang"       "Qidong"        "Chenxi"       
[25] "Zhongfang"     "Huitong"       "Jingzhou"      "Mayang"       
[29] "Tongdao"       "Xinhuang"      "Xupu"          "Yuanling"     
[33] "Zhijiang"      "Lengshuijiang" "Shuangfeng"    "Xinhua"       
[37] "Chengbu"       "Dongan"        "Dongkou"       "Longhui"      
[41] "Shaodong"      "Suining"       "Wugang"        "Xinning"      
[45] "Xinshao"       "Shaoshan"      "Xiangxiang"    "Baojing"      
[49] "Fenghuang"     "Guzhang"       "Huayuan"       "Jishou"       
[53] "Longshan"      "Luxi"          "Yongshun"      "Anhua"        
[57] "Nan"           "Yuanjiang"     "Jianghua"      "Lanshan"      
[61] "Ningyuan"      "Shuangpai"     "Xintian"       "Huarong"      
[65] "Linxiang"      "Miluo"         "Pingjiang"     "Xiangyin"     
[69] "Cili"          "Chaling"       "Liling"        "Yanling"      
[73] "You"           "Zhuzhou"       "Sangzhi"       "Yueyang"      
[77] "Qiyang"        "Taojiang"      "Shaoyang"      "Lianyuan"     
[81] "Hongjiang"     "Hengyang"      "Guiyang"       "Changsha"     
[85] "Taoyuan"       "Xiangtan"      "Dao"           "Jiangyong"    

[[2]]
 [1] 124236 113624  96573 110950 109081 106244 174988 235079 273907 256221
[11]  98013 104050 102846  92017 133831 158446 141883 119508 150757 153324
[21] 113593 129594 142149 100119  82884  74668  43184  99244  46549  20518
[31] 140576 121601  92069  43258 144567 132119  51694  59024  69349  73780
[41]  94651 100680  69398  52798 140472 118623 180933  82798  83090  97356
[51]  59482  77334  38777 111463  74715 174391 150558 122144  68012  84575
[61] 143045  51394  98279  47671  26360 236917 220631 185290  64640  70046
[71] 126971 144693 129404 284074 112268 203611 145238 251536 108078 238300
[81] 108870 108085 262835 248182 244850 404456  67608  33860

Step 5: Append the lag_sum GDPPC into hunan sf data frame

hunan <- left_join(hunan, lag.res)
Show the code
gdppc <- qtm(hunan, "GDPPC")
lag_sum_gdppc <- qtm(hunan, "lag_sum GDPPC")
tmap_arrange(gdppc, lag_sum_gdppc, asp=1, ncol=2)

7.3 Spatial window average

The spatial window average uses row-standardized weights and includes the diagonal element.

Step 1: add diagonal element to the neighbor list by using include.self() from spdep

wm_qs <- include.self(wm_q)

Step 2: Check neighbor list of area [1]

wm_qs[[1]]
[1]  1  2  3  4 57 85

Step 3: Obtain weights with nb2listw()

wm_qs <- nb2listw(wm_qs)
wm_qs
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 536 
Percentage nonzero weights: 6.921488 
Average number of links: 6.090909 

Weights style: W 
Weights constants summary:
   n   nn S0       S1       S2
W 88 7744 88 30.90265 357.5308

Step 4: create lag variable from our weight structure and GDPPC variable

lag_w_avg_gpdpc <- lag.listw(wm_qs, 
                             hunan$GDPPC)
lag_w_avg_gpdpc
 [1] 24650.50 22434.17 26233.00 27084.60 26927.00 22230.17 47621.20 37160.12
 [9] 49224.71 29886.89 26627.50 22690.17 25366.40 25825.75 30329.00 32682.83
[17] 25948.62 23987.67 25463.14 21904.38 23127.50 25949.83 20018.75 19524.17
[25] 18955.00 17800.40 15883.00 18831.33 14832.50 17965.00 17159.89 16199.44
[33] 18764.50 26878.75 23188.86 20788.14 12365.20 15985.00 13764.83 11907.43
[41] 17128.14 14593.62 11644.29 12706.00 21712.29 43548.25 35049.00 16226.83
[49] 19294.40 18156.00 19954.75 18145.17 12132.75 18419.29 14050.83 23619.75
[57] 24552.71 24733.67 16762.60 20932.60 19467.75 18334.00 22541.00 26028.00
[65] 29128.50 46569.00 47576.60 36545.50 20838.50 22531.00 42115.50 27619.00
[73] 27611.33 44523.29 18127.43 28746.38 20734.50 33880.62 14716.38 28516.22
[81] 18086.14 21244.50 29568.80 48119.71 22310.75 43151.60 17133.40 17009.33

Step 5: convert lag variable listw object into a dataframe by using as.data.frame()

lag.list.wm_qs <- list(hunan$NAME_3, lag.listw(wm_qs, hunan$GDPPC))
lag_wm_qs.res <- as.data.frame(lag.list.wm_qs)
colnames(lag_wm_qs.res) <- c("NAME_3", "lag_window_avg GDPPC")

Step 6: append lag_window_avg GDPPC values onto hunan sf data frame using left_join()

hunan <- left_join(hunan, lag_wm_qs.res)

Step 7: compare values of lag GDPPC and Spatial window average by using kable() of Knitr package

hunan %>%
  select("County", "lag GDPPC", "lag_window_avg GDPPC") %>%
  kable()
County lag GDPPC lag_window_avg GDPPC geometry
Anxiang 24847.20 24650.50 POLYGON ((112.0625 29.75523…
Hanshou 22724.80 22434.17 POLYGON ((112.2288 29.11684…
Jinshi 24143.25 26233.00 POLYGON ((111.8927 29.6013,…
Li 27737.50 27084.60 POLYGON ((111.3731 29.94649…
Linli 27270.25 26927.00 POLYGON ((111.6324 29.76288…
Shimen 21248.80 22230.17 POLYGON ((110.8825 30.11675…
Liuyang 43747.00 47621.20 POLYGON ((113.9905 28.5682,…
Ningxiang 33582.71 37160.12 POLYGON ((112.7181 28.38299…
Wangcheng 45651.17 49224.71 POLYGON ((112.7914 28.52688…
Anren 32027.62 29886.89 POLYGON ((113.1757 26.82734…
Guidong 32671.00 26627.50 POLYGON ((114.1799 26.20117…
Jiahe 20810.00 22690.17 POLYGON ((112.4425 25.74358…
Linwu 25711.50 25366.40 POLYGON ((112.5914 25.55143…
Rucheng 30672.33 25825.75 POLYGON ((113.6759 25.87578…
Yizhang 33457.75 30329.00 POLYGON ((113.2621 25.68394…
Yongxing 31689.20 32682.83 POLYGON ((113.3169 26.41843…
Zixing 20269.00 25948.62 POLYGON ((113.7311 26.16259…
Changning 23901.60 23987.67 POLYGON ((112.6144 26.60198…
Hengdong 25126.17 25463.14 POLYGON ((113.1056 27.21007…
Hengnan 21903.43 21904.38 POLYGON ((112.7599 26.98149…
Hengshan 22718.60 23127.50 POLYGON ((112.607 27.4689, …
Leiyang 25918.80 25949.83 POLYGON ((112.9996 26.69276…
Qidong 20307.00 20018.75 POLYGON ((111.7818 27.0383,…
Chenxi 20023.80 19524.17 POLYGON ((110.2624 28.21778…
Zhongfang 16576.80 18955.00 POLYGON ((109.9431 27.72858…
Huitong 18667.00 17800.40 POLYGON ((109.9419 27.10512…
Jingzhou 14394.67 15883.00 POLYGON ((109.8186 26.75842…
Mayang 19848.80 18831.33 POLYGON ((109.795 27.98008,…
Tongdao 15516.33 14832.50 POLYGON ((109.9294 26.46561…
Xinhuang 20518.00 17965.00 POLYGON ((109.227 27.43733,…
Xupu 17572.00 17159.89 POLYGON ((110.7189 28.30485…
Yuanling 15200.12 16199.44 POLYGON ((110.9652 28.99895…
Zhijiang 18413.80 18764.50 POLYGON ((109.8818 27.60661…
Lengshuijiang 14419.33 26878.75 POLYGON ((111.5307 27.81472…
Shuangfeng 24094.50 23188.86 POLYGON ((112.263 27.70421,…
Xinhua 22019.83 20788.14 POLYGON ((111.3345 28.19642…
Chengbu 12923.50 12365.20 POLYGON ((110.4455 26.69317…
Dongan 14756.00 15985.00 POLYGON ((111.4531 26.86812…
Dongkou 13869.80 13764.83 POLYGON ((110.6622 27.37305…
Longhui 12296.67 11907.43 POLYGON ((110.985 27.65983,…
Shaodong 15775.17 17128.14 POLYGON ((111.9054 27.40254…
Suining 14382.86 14593.62 POLYGON ((110.389 27.10006,…
Wugang 11566.33 11644.29 POLYGON ((110.9878 27.03345…
Xinning 13199.50 12706.00 POLYGON ((111.0736 26.84627…
Xinshao 23412.00 21712.29 POLYGON ((111.6013 27.58275…
Shaoshan 39541.00 43548.25 POLYGON ((112.5391 27.97742…
Xiangxiang 36186.60 35049.00 POLYGON ((112.4549 28.05783…
Baojing 16559.60 16226.83 POLYGON ((109.7015 28.82844…
Fenghuang 20772.50 19294.40 POLYGON ((109.5239 28.19206…
Guzhang 19471.20 18156.00 POLYGON ((109.8968 28.74034…
Huayuan 19827.33 19954.75 POLYGON ((109.5647 28.61712…
Jishou 15466.80 18145.17 POLYGON ((109.8375 28.4696,…
Longshan 12925.67 12132.75 POLYGON ((109.6337 29.62521…
Luxi 18577.17 18419.29 POLYGON ((110.1067 28.41835…
Yongshun 14943.00 14050.83 POLYGON ((110.0003 29.29499…
Anhua 24913.00 23619.75 POLYGON ((111.6034 28.63716…
Nan 25093.00 24552.71 POLYGON ((112.3232 29.46074…
Yuanjiang 24428.80 24733.67 POLYGON ((112.4391 29.1791,…
Jianghua 17003.00 16762.60 POLYGON ((111.6461 25.29661…
Lanshan 21143.75 20932.60 POLYGON ((112.2286 25.61123…
Ningyuan 20435.00 19467.75 POLYGON ((112.0715 26.09892…
Shuangpai 17131.33 18334.00 POLYGON ((111.8864 26.11957…
Xintian 24569.75 22541.00 POLYGON ((112.2578 26.0796,…
Huarong 23835.50 26028.00 POLYGON ((112.9242 29.69134…
Linxiang 26360.00 29128.50 POLYGON ((113.5502 29.67418…
Miluo 47383.40 46569.00 POLYGON ((112.9902 29.02139…
Pingjiang 55157.75 47576.60 POLYGON ((113.8436 29.06152…
Xiangyin 37058.00 36545.50 POLYGON ((112.9173 28.98264…
Cili 21546.67 20838.50 POLYGON ((110.8822 29.69017…
Chaling 23348.67 22531.00 POLYGON ((113.7666 27.10573…
Liling 42323.67 42115.50 POLYGON ((113.5673 27.94346…
Yanling 28938.60 27619.00 POLYGON ((113.9292 26.6154,…
You 25880.80 27611.33 POLYGON ((113.5879 27.41324…
Zhuzhou 47345.67 44523.29 POLYGON ((113.2493 28.02411…
Sangzhi 18711.33 18127.43 POLYGON ((110.556 29.40543,…
Yueyang 29087.29 28746.38 POLYGON ((113.343 29.61064,…
Qiyang 20748.29 20734.50 POLYGON ((111.5563 26.81318…
Taojiang 35933.71 33880.62 POLYGON ((112.0508 28.67265…
Shaoyang 15439.71 14716.38 POLYGON ((111.5013 27.30207…
Lianyuan 29787.50 28516.22 POLYGON ((111.6789 28.02946…
Hongjiang 18145.00 18086.14 POLYGON ((110.1441 27.47513…
Hengyang 21617.00 21244.50 POLYGON ((112.7144 26.98613…
Guiyang 29203.89 29568.80 POLYGON ((113.0811 26.04963…
Changsha 41363.67 48119.71 POLYGON ((112.9421 28.03722…
Taoyuan 22259.09 22310.75 POLYGON ((112.0612 29.32855…
Xiangtan 44939.56 43151.60 POLYGON ((113.0426 27.8942,…
Dao 16902.00 17133.40 POLYGON ((111.498 25.81679,…
Jiangyong 16930.00 17009.33 POLYGON ((111.3659 25.39472…

Plot lap_gdppc and w_ave_gdppc maps by using qtm() of tmap package

Show the code
w_avg_gdppc <- qtm(hunan, "lag_window_avg GDPPC")
tmap_arrange(lag_gdppc, w_avg_gdppc, asp=1, ncol=2)

7.4 Spatial window sum

The spatial window sum is the counter part of the window average, but without using row- standardized weights.

Step 1: add diagonal element to the neighbor list by using include.self() from spdep

wm_qs <- include.self(wm_q)
wm_qs
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 536 
Percentage nonzero weights: 6.921488 
Average number of links: 6.090909 

Step 2: Assign binary weights to the neighbor structure that includes the diagonal element

b_weights <- lapply(wm_qs, function(x) 0*x + 1)
b_weights[1]
[[1]]
[1] 1 1 1 1 1 1

Step 3: Explicitly assign weight values by using nb2listw() and glist()

b_weights2 <- nb2listw(wm_qs, 
                       glist = b_weights, 
                       style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 536 
Percentage nonzero weights: 6.921488 
Average number of links: 6.090909 

Weights style: B 
Weights constants summary:
   n   nn  S0   S1    S2
B 88 7744 536 1072 14160

Step 4: compute lag variable with lag.listw()

w_sum_gdppc <- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
w_sum_gdppc
[[1]]
 [1] "Anxiang"       "Hanshou"       "Jinshi"        "Li"           
 [5] "Linli"         "Shimen"        "Liuyang"       "Ningxiang"    
 [9] "Wangcheng"     "Anren"         "Guidong"       "Jiahe"        
[13] "Linwu"         "Rucheng"       "Yizhang"       "Yongxing"     
[17] "Zixing"        "Changning"     "Hengdong"      "Hengnan"      
[21] "Hengshan"      "Leiyang"       "Qidong"        "Chenxi"       
[25] "Zhongfang"     "Huitong"       "Jingzhou"      "Mayang"       
[29] "Tongdao"       "Xinhuang"      "Xupu"          "Yuanling"     
[33] "Zhijiang"      "Lengshuijiang" "Shuangfeng"    "Xinhua"       
[37] "Chengbu"       "Dongan"        "Dongkou"       "Longhui"      
[41] "Shaodong"      "Suining"       "Wugang"        "Xinning"      
[45] "Xinshao"       "Shaoshan"      "Xiangxiang"    "Baojing"      
[49] "Fenghuang"     "Guzhang"       "Huayuan"       "Jishou"       
[53] "Longshan"      "Luxi"          "Yongshun"      "Anhua"        
[57] "Nan"           "Yuanjiang"     "Jianghua"      "Lanshan"      
[61] "Ningyuan"      "Shuangpai"     "Xintian"       "Huarong"      
[65] "Linxiang"      "Miluo"         "Pingjiang"     "Xiangyin"     
[69] "Cili"          "Chaling"       "Liling"        "Yanling"      
[73] "You"           "Zhuzhou"       "Sangzhi"       "Yueyang"      
[77] "Qiyang"        "Taojiang"      "Shaoyang"      "Lianyuan"     
[81] "Hongjiang"     "Hengyang"      "Guiyang"       "Changsha"     
[85] "Taoyuan"       "Xiangtan"      "Dao"           "Jiangyong"    

[[2]]
 [1] 147903 134605 131165 135423 134635 133381 238106 297281 344573 268982
[11] 106510 136141 126832 103303 151645 196097 207589 143926 178242 175235
[21] 138765 155699 160150 117145 113730  89002  63532 112988  59330  35930
[31] 154439 145795 112587 107515 162322 145517  61826  79925  82589  83352
[41] 119897 116749  81510  63530 151986 174193 210294  97361  96472 108936
[51]  79819 108871  48531 128935  84305 188958 171869 148402  83813 104663
[61] 155742  73336 112705  78084  58257 279414 237883 219273  83354  90124
[71] 168462 165714 165668 311663 126892 229971 165876 271045 117731 256646
[81] 126603 127467 295688 336838 267729 431516  85667  51028

Step 6: convert lag variable listw object into a dataframe by using as.data.frame()

w_sum_gdppc.res <- as.data.frame(w_sum_gdppc)
colnames(w_sum_gdppc.res) <- c("NAME_3", "w_sum GDPPC")

Step 7: append w_sum GDPPC values into hunan sf data frame by using left_join()

hunan <- left_join(hunan, w_sum_gdppc.res)

Step 8: compare values of lag GDPPC and Spatial window average, kable() of Knitr package is used to prepare a table

hunan %>%
  select("County", "lag_sum GDPPC", "w_sum GDPPC") %>%
  kable()
County lag_sum GDPPC w_sum GDPPC geometry
Anxiang 124236 147903 POLYGON ((112.0625 29.75523…
Hanshou 113624 134605 POLYGON ((112.2288 29.11684…
Jinshi 96573 131165 POLYGON ((111.8927 29.6013,…
Li 110950 135423 POLYGON ((111.3731 29.94649…
Linli 109081 134635 POLYGON ((111.6324 29.76288…
Shimen 106244 133381 POLYGON ((110.8825 30.11675…
Liuyang 174988 238106 POLYGON ((113.9905 28.5682,…
Ningxiang 235079 297281 POLYGON ((112.7181 28.38299…
Wangcheng 273907 344573 POLYGON ((112.7914 28.52688…
Anren 256221 268982 POLYGON ((113.1757 26.82734…
Guidong 98013 106510 POLYGON ((114.1799 26.20117…
Jiahe 104050 136141 POLYGON ((112.4425 25.74358…
Linwu 102846 126832 POLYGON ((112.5914 25.55143…
Rucheng 92017 103303 POLYGON ((113.6759 25.87578…
Yizhang 133831 151645 POLYGON ((113.2621 25.68394…
Yongxing 158446 196097 POLYGON ((113.3169 26.41843…
Zixing 141883 207589 POLYGON ((113.7311 26.16259…
Changning 119508 143926 POLYGON ((112.6144 26.60198…
Hengdong 150757 178242 POLYGON ((113.1056 27.21007…
Hengnan 153324 175235 POLYGON ((112.7599 26.98149…
Hengshan 113593 138765 POLYGON ((112.607 27.4689, …
Leiyang 129594 155699 POLYGON ((112.9996 26.69276…
Qidong 142149 160150 POLYGON ((111.7818 27.0383,…
Chenxi 100119 117145 POLYGON ((110.2624 28.21778…
Zhongfang 82884 113730 POLYGON ((109.9431 27.72858…
Huitong 74668 89002 POLYGON ((109.9419 27.10512…
Jingzhou 43184 63532 POLYGON ((109.8186 26.75842…
Mayang 99244 112988 POLYGON ((109.795 27.98008,…
Tongdao 46549 59330 POLYGON ((109.9294 26.46561…
Xinhuang 20518 35930 POLYGON ((109.227 27.43733,…
Xupu 140576 154439 POLYGON ((110.7189 28.30485…
Yuanling 121601 145795 POLYGON ((110.9652 28.99895…
Zhijiang 92069 112587 POLYGON ((109.8818 27.60661…
Lengshuijiang 43258 107515 POLYGON ((111.5307 27.81472…
Shuangfeng 144567 162322 POLYGON ((112.263 27.70421,…
Xinhua 132119 145517 POLYGON ((111.3345 28.19642…
Chengbu 51694 61826 POLYGON ((110.4455 26.69317…
Dongan 59024 79925 POLYGON ((111.4531 26.86812…
Dongkou 69349 82589 POLYGON ((110.6622 27.37305…
Longhui 73780 83352 POLYGON ((110.985 27.65983,…
Shaodong 94651 119897 POLYGON ((111.9054 27.40254…
Suining 100680 116749 POLYGON ((110.389 27.10006,…
Wugang 69398 81510 POLYGON ((110.9878 27.03345…
Xinning 52798 63530 POLYGON ((111.0736 26.84627…
Xinshao 140472 151986 POLYGON ((111.6013 27.58275…
Shaoshan 118623 174193 POLYGON ((112.5391 27.97742…
Xiangxiang 180933 210294 POLYGON ((112.4549 28.05783…
Baojing 82798 97361 POLYGON ((109.7015 28.82844…
Fenghuang 83090 96472 POLYGON ((109.5239 28.19206…
Guzhang 97356 108936 POLYGON ((109.8968 28.74034…
Huayuan 59482 79819 POLYGON ((109.5647 28.61712…
Jishou 77334 108871 POLYGON ((109.8375 28.4696,…
Longshan 38777 48531 POLYGON ((109.6337 29.62521…
Luxi 111463 128935 POLYGON ((110.1067 28.41835…
Yongshun 74715 84305 POLYGON ((110.0003 29.29499…
Anhua 174391 188958 POLYGON ((111.6034 28.63716…
Nan 150558 171869 POLYGON ((112.3232 29.46074…
Yuanjiang 122144 148402 POLYGON ((112.4391 29.1791,…
Jianghua 68012 83813 POLYGON ((111.6461 25.29661…
Lanshan 84575 104663 POLYGON ((112.2286 25.61123…
Ningyuan 143045 155742 POLYGON ((112.0715 26.09892…
Shuangpai 51394 73336 POLYGON ((111.8864 26.11957…
Xintian 98279 112705 POLYGON ((112.2578 26.0796,…
Huarong 47671 78084 POLYGON ((112.9242 29.69134…
Linxiang 26360 58257 POLYGON ((113.5502 29.67418…
Miluo 236917 279414 POLYGON ((112.9902 29.02139…
Pingjiang 220631 237883 POLYGON ((113.8436 29.06152…
Xiangyin 185290 219273 POLYGON ((112.9173 28.98264…
Cili 64640 83354 POLYGON ((110.8822 29.69017…
Chaling 70046 90124 POLYGON ((113.7666 27.10573…
Liling 126971 168462 POLYGON ((113.5673 27.94346…
Yanling 144693 165714 POLYGON ((113.9292 26.6154,…
You 129404 165668 POLYGON ((113.5879 27.41324…
Zhuzhou 284074 311663 POLYGON ((113.2493 28.02411…
Sangzhi 112268 126892 POLYGON ((110.556 29.40543,…
Yueyang 203611 229971 POLYGON ((113.343 29.61064,…
Qiyang 145238 165876 POLYGON ((111.5563 26.81318…
Taojiang 251536 271045 POLYGON ((112.0508 28.67265…
Shaoyang 108078 117731 POLYGON ((111.5013 27.30207…
Lianyuan 238300 256646 POLYGON ((111.6789 28.02946…
Hongjiang 108870 126603 POLYGON ((110.1441 27.47513…
Hengyang 108085 127467 POLYGON ((112.7144 26.98613…
Guiyang 262835 295688 POLYGON ((113.0811 26.04963…
Changsha 248182 336838 POLYGON ((112.9421 28.03722…
Taoyuan 244850 267729 POLYGON ((112.0612 29.32855…
Xiangtan 404456 431516 POLYGON ((113.0426 27.8942,…
Dao 67608 85667 POLYGON ((111.498 25.81679,…
Jiangyong 33860 51028 POLYGON ((111.3659 25.39472…

Plot lap_sum GDPPC and w_sum_gdppc maps by using qtm() of tmap package

Show the code
w_sum_gdppc <- qtm(hunan, "w_sum GDPPC")
tmap_arrange(lag_sum_gdppc, w_sum_gdppc, asp=1, ncol=2)